INDIAN SCHOOL SOHAR

TERM II EXAMINATION (2023-24) MATHEMATICS (CODE-041)

CLASS: XI DATE: 20/02/24

MAX. MARKS: 80 TIME: 3 HOURS

General Instructions:

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 20 MCQ's and 2 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 mark each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 mark each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks.
- 6. Section E has 3 Source Based/Case Based/Passage Based/integrated units of assessment of 4 marks each with sub-parts.

SECTION – A							
	(Multiple Choice Questions) Each question carries 1 mark						
1.	For any two sets A and B, $(A - B) \cup (B - A)$ is						
	(a) $(A - B) \cup A$		(b) $(B - A) \cup B$				
	(c) $(A \cup B) - (A \cap$	B)	$(d) \ (A \cup B) \cap (A \cap B)$)			
2.	Let U be the universal s	set containing 700	elements. If A and B are	sub-sets of U such that			
	n(A) = 200, n(B) = 300 a	and $n(A \cap B) = 10$	00, then $n(A' \cap B') = $				
	(a) 400	(b) 500	(c) 800	(d) 300			
3.	The domain of the function $f(x) = \sqrt{x-1} + \sqrt{3-x}$						
	(a) [1, 3]	(b) (−∞, 5]	(c) (1, 3)	(d) (1, ∞)			
4.	Which one of the following is not a function?						
	(a) $\{(x, y): x, y \in F\}$	$\{x^2 = y\}$	(b) $\{(x, y): x, y \in R,$	$y^2 = x\}$			
	(c) $\{(x, y): x, y \in R\}$	$x = y^3$	(d) $\{(x, y): x, y \in R,$	$y = x^3$			
5.	$sin^6 \theta + cos^6 \theta + 3 sin^2 \theta cos^2 \theta$ is equal to						
	(a) 0	(b) 4	(c) 1	(d) 2			
6.	If tan θ = 3 and θ lies in	n the third quadrar	nt, then the value of cos	θ is			
	(a) $\frac{1}{\sqrt{10}}$	(b) $\frac{-1}{\sqrt{10}}$	(c) $\frac{3}{\sqrt{10}}$	(d) $-\frac{3}{\sqrt{10}}$			
7.	If $\left(\frac{1+i}{1-i}\right)^x = 1$ and $n \in N$, then					
	(a) x = 2n+1	(b) x = 4n+1	(c) x = 2n	(d) x = 4n			
8.	If x−1 > 5, then						
	(a) $x \in (-4,6)$	(b) $x \in [-4, 6]$					
	(c) $x \in (-\infty, -4) \cup (6)$	$(d) x \in (-\infty, -4) \cap (6, \infty)$					
9.	Solution of a linear inequality in variable x is represented on number line is						
	(a) [−∞, 5)	໌ (b) (5,∞)	(<i>c</i>) [5, ∞)	<i>(d)</i> [−∞,5]			
10.	If $40C_{n+2} = 40C_{n-2}$, the	en value of n is					
	(a) 20	(b) 18	(c) 14	(d) 28			
11.	The number of ways to	arrange the letter	rs of the word HAPPY are	2			
	(a) 120	(b) 90	(c) 60	(d) 150			

12.	The ratio of sum of first three terms of a GP to the	he sum of the first six te	erms is 64:91. The			
	common ratio is					
	(a) ¼ (b) 4/3	(C) ¾	(d) 1			
13.	If one A.M, A and two G.M p and q are inserted	between two numbers	a and b, then which of the			
	following is true?	2				
	(a) $a^3 + b^3 = 2Apq$ (b) $p^3 + q^3 = 2Apq$	(c) $a^3 + b^3 = 2Aab$	(d) None of these			
14.	The total number of terms in the expansion of (>	$(-a)^{99} - 1$ is				
	(a) 100 (b) 51	(c) 50	(d) 101			
15	A line passes through the point (2,2) and is perpe	endicular to the line $3x$	+ y = 3. It's y intercept is			
10	(a) 4/3 (b) 1/3	(C) 5	(d) 15			
16.	x-axis is the intersection of the two planes					
17	(a) xy and xz (b) xy and yz	(C) XZ and YZ	(d) none of these			
17.	Without repetition, four-digit numbers are formed with the numbers 0, 2, 3 and 5. What is the					
	probability of it to be divisible by 5°	(c) 1/20	(4) E (0			
10	(a) 1/5 (b) 4/5	(0) 1/50	(u) 5/9			
10.	(a) $a^2 + c^2 = 0$ (b) $b^2 + c^2 = 0$	(c) $b^2 + d^2 = 0$	$(d) a^2 + b^2 - c^2 + d^2$			
	In the following question, a statement of Asserti	on (A) is followed by a	statement of Reason (R)			
	Choose the correct answer out of the following choices					
	(a) Both A and R are true and R is correct explanation of Δ					
	(b) Both A and R are true and R is not correc	t explanation of A				
	(c) A is true but R is false					
	(d) A is false but R is true					
19.	Assertion (A) : Mean deviation about the mediar	n of 38, 70, 48, 34, 63, 4	12, 55, 44, 54 and 46 is 8.6			
	Reason (R): MD(Median) = $\frac{\Sigma x_i - \text{Median} }{\Sigma x_i - \text{Median} }$					
20	$\frac{1}{1} \frac{1}{1}$					
20.	Assertion (A) : $\frac{dx}{dx}\left(\frac{1}{x}\right) = \frac{1}{x^2}$					
	Reason (R): $\frac{a}{dx}(x^n) = nx^{n-1}$					
	SECTION	N — B				
	[This section comprises of very short answe	er type questions (VSA)	of 2 marks each]			
21.	Prove that $\frac{1+\sin 2\theta + \cos 2\theta}{\cos 2\theta} = \cot \theta$					
	$1+\sin 2\theta-\cos 2\theta$	1 81				
	If A lies in second quadrant and 3 tan $A + 4 = 0$ t	hen find the value of 2	cot A – 5 cos A + sin A			
22.	Find the equation of the ellipse with length of m	aior axis 26 and foci (+	<u></u>			
22.	I in a the equation of the empse with length of the	ORI	, , ,			
	Find accentricity and the length of the later root	$\frac{y^2}{x^2} = 1$				
	Find eccentricity and the length of the latus rectum of $\frac{1}{9} - \frac{1}{27} = 1$					
23.	Verify that (0, 7, 10), (-1, 6, 6) and (-4, 9, 6) are the vertices of a right-angled triangle.					
24.	Prove that the derivative of sin ² x is sin2x					
25.	Find the variance and standard deviation for the following data: 6, 10, 7, 13, 4, 12, 8, 12					
	SECTION – C					
20	[Ins section comprises of very short answer type questions (SA) of 3 marks each]					
26.	Find the domain of the function given by $f(x) = \frac{1}{\sqrt{2}}$	$\frac{1}{[x]^2 - [x] - 6}$				
	, v					

27.	Prove that $sin^3 x + sin^3 \left(\frac{2\pi}{3} + x\right) + sin\left(\frac{4\pi}{3} + x\right) = -\frac{3}{4}sin 3x$									
	[OR]									
	Show that $(1 +$	$+ \cos \frac{\pi}{8} \right) ($	$(1 + cos^{\frac{3}{2}})$	$\left(\frac{3\pi}{8}\right)\left(1+6\right)$	$\cos\frac{5\pi}{8}$	$1 + \cos \frac{7\pi}{8}$	$\left(\frac{t}{2}\right) = \frac{1}{8}$			
28.	Find the values	s of x and	y for whi	ch the co	mplex nur	mbers -3	+ ix²y and	l x ² + y + 4	li are con	jugates
	of each other.									
	Find z if lz ⊥1 l	- 7 + 2 (1	1 ± i)		[OR]					
29.	A rod of longth	12 cm mov	voc with it	onds alway	ws touchir	a the coo	rdinato av	os Dotorn	nino tho or	nuation of
	the locus of a point P on the rod which is 3 cm from the end in contact with the x-axis.									
30.	Solve the following system of inequalities: $\frac{2x+1}{5} > 5$. $\frac{x+7}{5} > 2$									
31.	If p and q are t	he length	s of the p	erpendic	<u>7x−1</u> ulars from	n the origi	in to the	lines		
	$x\cos\theta - y\sin\theta$	$i \theta = \vec{k} c \vec{k}$	os 2θ and	х sec θ	+ y cosec	$\theta = k, r \theta$	espective	ly.		
	Prove that p^2	$+4q^{2} =$	<i>k</i> ²							
					[OR]					
	Find the equations of the two sides of of an equilateral triangle whose one side is $2x + y - 1 = 0$ and the vertex opposite to this side is $(-3, 0)$									
				SE	CTION – I	<u>)</u>				
	[Th	is section	comprise	es of long	answer ty	/pe quest	ions (LA)	of 5 mark	s]	
32.	Evaluate lim_{π}^{t}	$\frac{an^3 x - tan}{an^3 x - tan}$	<u>x</u>							
	$x \rightarrow \frac{\pi}{4}$	$\cos(x+\frac{1}{4})$								
	([OR]	r < 0							
	$\int_{1}^{1} f(x) = \begin{cases} nx \\ nx \end{cases}$	x + n, $(+ m)$, (x < 0 x < 1							
	$ \begin{cases} n \\ n$									
	For what integers m and n does both $lim f(x)$ and $lim f(x)$ exist?									
33.	(i) Draw the graph of cos x in the interval $[-4\pi, 4\pi]$									
	(ii) Find the value of cos (-1710°)									
34.	If a, b, c, d are	GP, prove	e that (a ⁿ	+ b ⁿ), (b ⁿ	+ c ⁿ) and	(c ⁿ + d ⁿ) a	re in GP			
35.	Find the mean	and varia	nce for ti	1e followi	ng data.	90 - 95	95 - 100	100-105	105-110	110-115
	No. of	3	4	7	7	15	9	6	6	3
	children									
					SECTION	— E		•		
	[This section co	omprises	of 3 case	-study/pa	assage-ba	sed quest	ions of 4	marks ea	ch with s	ub-parts.
	The first two case study questions have three sub-parts (i), (ii) and (iii) of marks 1,1,2 respectively.									
36	Shreva Pakhi	Amit and	Rov won	medals f	parts of z	Olympia	d while S	ara Ahi I	Rov and A	iith won
50.	medals for Mathematics Olympiad. Let X be the set of students who won for Science and Y be the									
	set of students who won for Mathematics. Based on this information answer the following									
	questions.									
	(i) Find X U Y									
	(II) FINU X - Y (III) Draw Venn diagram to represent the above data and shade X O Y'									
	[OR]									
	(iii) If $X \cap A = Y \cap A = \emptyset$ and $X \cup A = Y \cup A$, for some set A, show that $X = Y$									

37.	A state cricket authority has to choose a team of 11 members. The authority asks 2 coaches of a government academy to select the team members that have experienced as well as						
	the best performers in last 15 matches. They can make up a team of 11 cricketers amongst 15 possible candidates.						
	Based on the above information, answer the following questions. (i) In how many ways can the final eleven be selected from 15 cricket players if there is no restriction?						
	(ii) In how many ways can the final eleven be selected from 15 cricket players if one of them must be included?						
	(iii) In how many ways can the final eleven be selected from 15 cricket players if one of them, who is bad form must be excluded?						
	[OR]						
	(iii) If there are 6 bowlers, 3 wicket keepers and 11 batsmen in all. Find the number of ways of selecting 4 bowlers, 2 wicket keepers and 5 batsmen to form the team.						
38.	A young man visits a hospital for medical checkup. The probability that he has lungs problem is						
	0.55, heart problem is 0.29 and either lungs or heart problem is 0.57.						
	What is the probability that he has						
	(i) both lungs as well as heart problem						
	(ii) Lungs problem but not heart problem						